If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+5p-1=0
a = 3; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·3·(-1)
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{37}}{2*3}=\frac{-5-\sqrt{37}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{37}}{2*3}=\frac{-5+\sqrt{37}}{6} $
| 2(2t+2)=3/4(24-8t) | | 9+5w-15w=12-6w | | d-2=3/8d+5/8d | | 4x+3.6-1.6x=0.8x-3.6 | | 2x+4=-(-7x+6 | | 40(2x-1)=8(x+4)3x | | 6=x3(12-12x) | | 24=x/2+3 | | 33.33333(9x+3)=3x+1 | | 330x+80=331x+79 | | (-1/9)(x-27)+(1/3)(x+3)=x-17 | | x/1=1/1 | | 3y^2-2y+6=0 | | 21-x=7x-56 | | 6+2x=-2x+6 | | 2x+8=2x+16 | | -4-4x+8x=4 | | F(36)=2x^2-3 | | 31+30v=1 | | h=(3)=-2(3)^2+4 | | 4z-4=-5z-4 | | 1/3(-27j+18)=-9j+6 | | 12(x+15)=288 | | 1/7(x+21)=-16-2 | | a=25-4a | | (9/10)g=7+(2/3) | | 2x-8-3x+6=1 | | 3w+14=5w | | 6(x+2)-14=2x+10 | | X+8=-x+4 | | 20-9x=10x+x | | 1/7(x-8)=-16-2 |